Chronic intermittent hypoxia induces atherosclerosis.
نویسندگان
چکیده
RATIONALE Obstructive sleep apnea, a condition leading to chronic intermittent hypoxia (CIH), is associated with hyperlipidemia, atherosclerosis, and a high cardiovascular risk. A causal link between obstructive sleep apnea and atherosclerosis has not been established. OBJECTIVES The objective of the present study was to examine whether CIH may induce atherosclerosis in C57BL/6J mice. METHODS Forty male C57BL/6J mice, 8 weeks of age, were fed either a high-cholesterol diet or a regular chow diet and subjected either to CIH or intermittent air (control conditions) for 12 weeks. MEASUREMENTS AND MAIN RESULTS Nine of 10 mice simultaneously exposed to CIH and high-cholesterol diet developed atherosclerotic lesions in the aortic origin and descending aorta. In contrast, atherosclerosis was not observed in mice exposed to intermittent air and a high-cholesterol diet or in mice exposed to CIH and a regular diet. A high-cholesterol diet resulted in significant increases in serum total and low-density lipoprotein cholesterol levels and a decrease in high-density lipoprotein cholesterol. Compared with mice exposed to intermittent air and a high-cholesterol diet, combined exposure to CIH and a high-cholesterol diet resulted in marked progression of dyslipidemia with further increases in serum total cholesterol and low-density lipoprotein cholesterol (124 +/- 4 vs. 106 +/- 6 mg/dl; p < 0.05), a twofold increase in serum lipid peroxidation, and up-regulation of an important hepatic enzyme of lipoprotein secretion, stearoyl-coenzyme A desaturase-1. CONCLUSIONS CIH causes atherosclerosis in the presence of diet-induced dyslipidemia.
منابع مشابه
Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro
Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...
متن کاملIntermittent hypoxia-activated cyclooxygenase pathway: role in atherosclerosis.
Intermittent hypoxia, the main stimulus of obstructive sleep apnoea (OSA), induces inflammation, leading to early atherosclerosis. Whether the cyclooxygenase (COX) pathway contributes to intermittent hypoxia-induced atherosclerosis remains to be determined. We studied the effects of 8-weeks of intermittent hypoxia exposure on COX-pathway gene expression and atherosclerosis, and the influence of...
متن کاملRepetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury.
Spinal injury disrupts connections between the brain and spinal cord, causing life-long paralysis. Most spinal injuries are incomplete, leaving spared neural pathways to motor neurons that initiate and coordinate movement. One therapeutic strategy to induce functional motor recovery is to harness plasticity in these spared neural pathways. Chronic intermittent hypoxia (CIH) (72 episodes per nig...
متن کاملTempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress
Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....
متن کاملChronic-intermittent hypoxia induces immediate early gene expression in the midline thalamus and epithalamus.
Chronic-intermittent hypoxia (CIH) was postulated to activate thalamic regions that are synaptically related to autonomic-related areas of the cerebral cortex. Animals exposed to CIH for 30 days exhibited c-fos labeling in paraventricular thalamic and lateral habenular nuclei. Our findings strongly suggest activation of a diencephalic network that participates in behavioral responses to chronic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 175 12 شماره
صفحات -
تاریخ انتشار 2007